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Abstract. In digital dentistry, high-quality tooth models are essential
for dental diagnosis and treatment. 3D CBCT images and intra-oral
scanning models are widely used in dental clinics to obtain tooth mod-
els. However, CBCT image is volumetric data often with limited res-
olution (about 0.3–1.0 mm spacing), while intra-oral scanning model is
high-resolution tooth crown surface (about 0.03 mm spacing) without
root information. Hence, dentists usually scan and combine these two
modalities of data to build high-quality tooth models, which is time-
consuming and easily affected by various patient conditions or acquisition
artifacts. To address this problem, we propose a learning-based frame-
work to generate high-quality tooth models with both fine-grained tooth
crown details and root information only from CBCT images. Specifi-
cally, we first introduce a tooth segmentation network to extract indi-
vidual teeth from CBCT images. Then, we utilize an implicit function
network to generate tooth models at arbitrary resolution in a continuous
learning space. Moreover, to capture fine-grained crown details, we fur-
ther explore a curvature enhancement module in our framework. Exper-
imental results show that our proposed framework outperforms other
state-of-the-art methods quantitatively and qualitatively, demonstrating
the effectiveness of our method and its potential applicability in clinical
practice.

1 Introduction

With the development of computer-aided techniques, digital dentistry has been
widely used in dental clinics for diagnosis [15], restoration [10], and treatment
planning [6,17]. In these systems, the acquisition of high-quality 3D tooth mod-
els is essential to assist dentists in extracting [14], implanting [7], or rearranging
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Fig. 1. Left: Overview of generating high-quality tooth model from CBCT images
only. Our proposal is to use the tooth crown surfaces obtained from intra-oral scanning
models to guide the training process of high-resolution tooth model generation from
CBCT images. Right: Overview of high-quality tooth model building from CBCT image
and intra-oral scanning model.

teeth [9]. In this regard, segmenting individual teeth from cone-beam computed
tomography (CBCT) images [3,4] (the 3D volumetric data of all oral tissues)
is a long-standing topic and has achieved promising results. However, due to
the imaging techniques and radiation exposure, the spatial resolution in CBCT
images is relatively low (about 0.3–1.0mm spacing), which limits capturing of
the tooth crown details. Thus, dentists usually rely on intra-oral scanning models
(high-precision tooth crown surface without root information), to analyze occlu-
sion relations of upper and lower jaws [16]. But it is time-consuming to collect
both modalities of data, and is easily affected by various patient conditions or
acquisition artifacts. In this situation, it is of great significance for developing a
framework to generate high-quality tooth models with fine-grained tooth crown
details and root information only from CBCT images.

To effectively reconstruct 3D shapes with high resolution, implicit function
networks [2,13] have achieved outstanding performance in 3D synthetic datasets
for shape recovery, completion, and super-resolution. Their advantage is the
ability to handle different objects in a continuous learning space. Unfortunately,
most of these methods are designed to capture general shapes, so the predictions
tend to be over-smooth, thus ignoring many important geometric details. In the
meantime, compared with clean 3D models in the synthetic datasets, 3D mod-
els derived from CBCT images or intra-oral scanning models usually introduce
more noises from real-world clinical scenarios. Hence, it is extremely challenging
to recover high-quality tooth models by segmenting teeth directly from CBCT
images, especially on tooth crowns with rich geometric details.

In this study, to tackle the above limitations, we propose a novel curvature-
enhanced implicit function network for high-quality tooth model generation from
CBCT images. Our key idea is to combine the commonly used CNN-based seg-
mentation network with an implicit function network to generate 3D tooth mod-
els with fine-grained geometric details. Specifically, given a 3D CBCT image, we
first utilize a segmentation network to segment individual teeth, and represent
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Fig. 2. The overview of our framework. The green arrows indicate the flows for training
and inference, and the red arrows are for training only. (Color figure online)

the high-resolution output in the voxel space. Then, we introduce an implicit
function network to generate high-quality 3D tooth models at arbitrary reso-
lution in a continuous space. Particularly, to retain tooth crown surfaces with
fine-grained details, a curvature enhancement module is proposed to predict local
shape properties, which in return guides the implicit function network to repro-
duce plausible tooth shapes. Note that the ground truth, i.e., high-quality tooth
models, in the training stage is built by merging respective surfaces from the
CBCT image and intra-oral scanning model as shown in Fig. 1.

2 Method

The overview of our framework to generate high-quality tooth models from
CBCT images is shown in Fig. 2, including a tooth instance segmentation mod-
ule, a surface reconstruction module, and a curvature enhancement module, as
detailed below.

2.1 High-quality Tooth Model Building

In this study, we combine the two modalities of data together (i.e., 3D CBCT
images and intra-oral scanning models) to build high-quality tooth models, where
root surfaces and crown surfaces are produced from the paired CBCT image and
the intra-oral scanning model, respectively. As shown in Fig. 1, the ground truth
building process is composed of three steps. First, given a CBCT image and
its paired intra-oral scanning model, we manually delineate tooth model on the
CBCT image, and crown model on the intra-oral scanning model. Then, as the
paired tooth model and crown model are scanned from the same patient, we
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directly apply the rigid ICP [1] algorithm to align these two models. Finally, we
remove the tooth crown surface on the tooth model, and use Screened Poisson
surface reconstruction [8] to merge the remaining root surface with the crown
surface extracted from the intra-oral scanning model. In this way, the generated
tooth model is of high quality with fine-grained tooth crown details.

2.2 Tooth Instance Segmentation

With the built high-quality 3D tooth models, we utilize them as ground truth
to supervise the tooth instance segmentation network. The main purpose of this
step is to produce the label of each tooth, which can effectively remove the back-
ground of soft tissues. In this work, we apply the typical method, HMG-Net [5],
with state-of-the-art performance for tooth instance segmentation from CBCT
images. The key idea of HMG-Net is to first detect all teeth in the CBCT images,
and then apply tooth-level segmentation to delineate each tooth. We define Lseg

with the cross-entropy loss and Dice loss to supervise the segmentation network.
As shown in Fig. 2, although the method can achieve promising performance

on tooth segmentation, details especially on tooth crowns are usually lost due
to limited resolution of CBCT images. Hence, we then take the predicted tooth
label and the cropped image patch as input to the surface reconstruction module,
to generate high-quality tooth models with rich geometric details.

2.3 Surface Reconstruction

In the surface reconstruction module, inspired by the work in 3D model comple-
tion [2], we introduce the implicit function strategy with multi-scale encoding
and shape decoding, to preserve fine-grained surface details by reconstructing
3D tooth models at arbitrary resolution in a continuous space.

Multi-scale Encoding. With the tooth-level input X (i.e., cropped image
patch and tooth label), we first employ an encoder E to extract multi-scale
features {F1, F2, . . . , FL} from different convolutional layers. Note that the first
feature map F1 is the input X. In this way, the feature maps at early stages
can capture local information, while the feature maps at late stages contain
global information. And all the feature maps from different layers preserve 3D
volumetric structures aligned with the input data, which is defined as:

E(X) := F1, F2, . . . , FL. (1)

Shape Decoding. As multi-scale features are discrete in grids, given a query
point p ∈ R

3 in the continuous space, we can obtain its feature by trilinear inter-
polation. Moreover, to encode more local neighborhood information for shape
decoding, we extract features at the location of the query point p, and addi-
tionally at surrounding points in a distance d (d = 0.05 in this paper) along
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the Cartesian axes. At last, we integrate the point-wise features from the multi-
scale features {F1, F2, . . . , FL} with different receptive fields, which is denoted as
{F1(p), F2(p), . . . , FL(p)}. The integrated point-wise features are then fed into
a point-wise decoder D, parameterized by a fully connected neural network, to
predict the corresponding occupancy value (i.e., inside or outside the surface):

ôp = D(F1(p), F2(p), . . . , FL(p)) ∈ {0, 1}, (2)

where {0, 1} denotes the query point being outside or inside the surface, respec-
tively. We employ the BCE loss Locc to supervise the learning process. Note
that, to robustly train the network, we sample a number of query points in the
continuous space, using the sampling strategy described in Sect. 3.2.

2.4 Curvature Enhancement

Since our method is defined in the continuous space, it is capable of describing a
surface at arbitrary resolution. However, it still cannot effectively produce tooth
crown surfaces with fine-grained details, for the reason that only the binary occu-
pancy classification on query points cannot faithfully learn the changes of local
shape properties (e.g., surface curvature). Thus, we further propose a branch to
predict the curvature of each query point.

Specifically, we first extract the vertices V = {v1, v2, . . . , vT ; vt ∈ R
3} on the

ground truth tooth surface, and compute their corresponding curvature values
{c1, c2, . . . , cT ; ct ∈ R}. For each vt ∈ V , we extract the features from its K
nearest query points {p′

1, p
′
2, . . . , p

′
K} (K = 5 in this paper), and obtain curvature

features Fc(vt) by Inverse Distance Weighting (IDW) [12], which is defined as

Fc(vt) =
K∑

k=1

1/D(p′
k, vt)∑K

k=1 1/D(p′
k, vt)

F (p′
k), (3)

where D denotes the Euclidean distance. The curvature features are then fed into
the point-wise regressor R, parameterized by a fully connected neural network,
to predict the curvature value of vt. And we use the smooth L1 error Lcur to
supervise the curvature enhancement module.

Finally, the overall loss with multiple supervision is computed by:

Ltotal = Lseg + Locc + Lcur. (4)

Lseg and Locc refer to the loss functions of the tooth segmentation network and
the implicit function network, respectively.

3 Experiments

3.1 Dataset and Evaluation Metrics

To evaluate the performance of our proposed method, we collect a dataset with
50 patients in dental clinics. Each subject has a 3D CBCT image (with 0.4mm
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spacing) and paired intra-oral scanning model (with 0.03mm spacing). To build
the ground truth of our dataset, 3 experts are first employed to manually delin-
eate the tooth labels and crown labels on CBCT images and intra-oral scanning
models, respectively. Then, we merge the two modalities of data to obtain the
high-quality tooth models (see details in Sect. 2.1). In this study, 50 samples are
randomly divided into 3 subsets, using 20 for training, 10 for validation, and the
remaining 20 samples for testing. Note that only CBCT images are fed into the
framework to generate high-quality tooth models.

To quantitatively analyze the performance of our method, we report the fol-
lowing four metrics, including Intersection over Union (IoU), Chamfer-L2, Nor-
mal Consistency (Normals), and occupancy accuracy (OccAcc). IoU measures
the similarity between two volumes, and Chamfer-L2 is the metric to measure a
bidirectional distance between two surfaces. Normals is first proposed by OccNet
[13] to measure the normal consistency between two surfaces. We define OccAcc
as an additional accuracy metric to evaluate the occupancy prediction.

3.2 Sampling Strategies

To approximate the continuous query space, we briefly introduce the sampling
strategies during network training and inference stages. In the training stage, the
most intuitive way is to sample points around the ground truth tooth surface
within a small distance. Specifically, we first sample points on the ground truth
tooth surface, and then add random displacements with two Gaussian distribu-
tions, where their deviations are σ1 = 0.02 and σ2 = 0.1, respectively. Thus, the
sample points within σ1 can capture fine-grained surface details, and the sample
points within σ2 can cover the entire geometric space. In the network training,
we sample 50K points from each of the two distributions. In the inference stage,
since the ground truth tooth model is not available, we uniformly sample points
along each axis in the continuous query space. Note that the retrieval resolution
is determined by the density of query points on each axis. In our experiments, to
obtain the tooth model with rich geometry information, especially on the tooth
crowns, we query output with a resolution of 2563, which is about 43 times larger
than the image patch cropped from the original 3D CBCT image.

3.3 Implementation Details

Our framework is built on a PyTorch platform with an NVIDIA Tesla V100S
GPU. The encoder is composed of four blocks, including one Convolution(Conv,
with a 3 × 3 × 3 kernel and a 1 × 1 × 1 padding)-ReLU-Batch Normaliza-
tion(BN) block and three MaxPooling-Conv-ReLU-Conv-ReLU-BN blocks. And
the network architectures of the point-wise decoder C and the point-wise regres-
sor R are the same, which include four fully connected layers with ReLU. We use
the Adam optimizer with a learning rate of 0.0001, divided by 10 for every 20
epochs. In the testing stage, with the predicted occupancy of each query point
(i.e., inside or outside the surface), we apply the traditional Marching Cubes
algorithm [11] to generate high-quality tooth models.
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Fig. 3. Qualitative results of three typical cases generated by different methods.

Table 1. Quantitative comparison with different methods for high-quality tooth model
generation.

Method OccAcc ↑ IoU ↑ Chamfer-L2 ↓ Normals ↑
HMG-Net 75.95 77.10 6.30e-4 95.09
OccNet 61.41 54.04 2.92e-3 85.08
IF-Net 77.47 65.52 9.34e-3 88.67
Ours 79.70 83.03 3.00e-4 96.25

3.4 Comparison with Other Methods

Recently, many methods have been proposed to reconstruct 3D shapes with
implicit functions, including the Occupancy Networks (OccNet) [13], and the
Implicit Feature Networks (IF-Net) [2]. We also implement the baseline segmen-
tation method (i.e., HMG-Net [5]) with high-quality tooth model supervision.

The quantitative results of different methods are presented in Table 1. It can
be found that our approach achieves the best performance across all metrics.
Moreover, the accuracy of directly applying the implicit function based methods
on tooth surfaces (i.e., OccNet and IF-Net) is relatively low. The main reason
is that there is a large domain gap between the input CBCT images and out-
put tooth surfaces. Directly applying surface reconstruction algorithms cannot
effectively address the distribution shift problem.

In order to analyze the advantage of our algorithm more comprehensively,
we further provide visual comparison of three typical examples in Fig. 3. It
can be found that, the tooth instance segmentation method (i.e., HMG-Net)
can generate promising tooth shapes, but many details, especially on the
tooth crowns, are missed due to limited resolution of CBCT images. For the
implicit function based methods, we observe that the tooth surfaces produced
by OccNet are too smooth with only global structures. With the multi-scale
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Fig. 4. Investigation on surface curvatures. The figure shows the comparison of our
framework without and with curvature enhancement for surface details. Different colors
are used to show curvature distribution on the surface.

Table 2. Statistical results for analyzing different components in our framework. “H-
IF” denotes the joint learning of HMG-Net and IF-Net.

Method OccAcc ↑ IoU ↑ Chamfer-L2 ↓ Normals ↑
HMG-Net 75.95 77.10 6.30e-4 95.09
H-IF 78.67 82.74 2.88e-4 95.87
Ours 79.70 83.03 3.00e-4 96.25

feature extraction scheme, IF-Net generates better results with fine-grained
details. However, many noises are introduced due to large domain gap between
CBCT images and tooth models. Notably, our method matches better with
the ground truth, where global structures and local details can be successfully
retained, indicating the effectiveness of both the image-to-surface tooth model
generation scheme and the curvature enhancement in this specific task.

3.5 Ablation Study

To validate the effectiveness of each component in our method, we conduct sev-
eral ablation experiments by gradually augmenting the baseline network.

Surface Reconstruction. Based on the baseline tooth instance segmentation
network (i.e., HMG-Net), we add another branch, surface reconstruction by the
implicit function learning, to enhance the network capability on global tooth
structures, and denote it as H-IF. The results are shown in Table 2. It can be
found that the accuracy is consistently improved in terms of all metrics. Particu-
larly, the surface distance error (i.e., Chamfer-L2) is greatly reduced (6.30e−4 vs.
2.88e−4), demonstrating that the implicit function strategy can more effectively
learn global tooth structures.
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Curvature Enhancement. To validate the effectiveness of the curvature
enhancement module, we include this module based on H-IF as our final frame-
work. As shown in Table 2, the statistical results are improved, especially on
the metric of surface normals (95.87% vs. 96.25%). Note that surface normals
are usually sensitive to the geometric details on surfaces. Moreover, we fur-
ther present the visual comparison of curvature distributions in Fig. 4. The first
column is the curvature distributions computed of manual annotations in origi-
nal CBCT images, where many geometric details, especially on the crowns, are
missed due to limited CBCT resolution. The second and third columns are the
tooth models produced by our method without and with the curvature enhance-
ment module. It can be seen that, with the curvature enhancement (3rd column),
our framework can produce local shape properties more clearly, and the curva-
ture distribution matches with the ground truth more consistently.

4 Conclusion

In this paper, we propose an effective framework to generate high-quality tooth
models from CBCT images. Our framework first introduces a tooth instance
segmentation network to segment individual teeth coarsely, and then learns to
generate high-quality tooth models under implicit function learning. Meanwhile,
a curvature enhancement module is further proposed to guide the surface recon-
struction. Experimental results on the real-patient dataset demonstrate that
our proposed method outperforms other state-of-the-art methods, showing its
potential to be applied in dental clinics.
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